304 research outputs found

    Delay and distortion of slow light pulses by excitons in ZnO

    Get PDF
    Light pulses propagating through ZnO undergo distortions caused by both bound and free excitons. Numerous lines of bound excitons dissect the pulse and induce slowing of light around them, to the extend dependent on their nature. Exciton-polariton resonances determine the overall pulse delay and attenuation. The delay time of the higher-energy edge of a strongly curved light stripe approaches 1.6 ns at 3.374 eV with a 0.3 mm propagation length. Modelling the data of cw and time-of-flight spectroscopies has enabled us to determine the excitonic parameters, inherent for bulk ZnO. We reveal the restrictions on these parameters induced by the light attenuation, as well as a discrepancy between the parameters characterizing the surface and internal regions of the crystal.Comment: 4 pages, 4 figure

    Mie-resonances, infrared emission and band gap of InN

    Full text link
    Mie resonances due to scattering/absorption of light in InN containing clusters of metallic In may have been erroneously interpreted as the infrared band gap absorption in tens of papers. Here we show by direct thermally detected optical absorption measurements that the true band gap of InN is markedly wider than currently accepted 0.7 eV. Micro-cathodoluminescence studies complemented by imaging of metallic In have shown that bright infrared emission at 0.7-0.8 eV arises from In aggregates, and is likely associated with surface states at the metal/InN interfaces.Comment: 4 pages, 5 figures, submitted to PR
    • …
    corecore